

An extensive range of non-halogenated flame retardants

Under the tradename
Exolit® Clariant offers a
distinctive range of nonhalogenated flame retardants
solutions providing more
environmentally compatible
fire protection for buildings,
electric and electronic
equipment as well as
aeroplanes, trains, busses
and ships.

The Exolit AP product group provides polymeric Flame Retardants based on ammonium polyphosphate enabling a broad spectrum of different applications. The Exolit OP series offers a unique class of environmentally optimised non-halogenated, organo-phosphorus flame retardants for engineering thermoplastics and thermosets. The Exolit RP family, based on red phosphorus, is used in specialty coatings and polymer applications.

Products that offer outstanding sustainability advantages are excelled with our EcoTain® label. These products have undergone a systematic, in-depth screening process using 36 criteria in all three sustainability dimensions: social, environmental and economic.

EcoTain® products significantly exceed sustainability market standards, have best-in-class performance and contribute overall to sustainability efforts of the company and our customers. We are determined to keep expanding the number of EcoTain® products and continue to screen our product portfolio.

$Exolit^{\tiny{(\!R\!)}}$

OVERVIEW BY POLYMER CLASS

PRODUCT	ECO TAIN	HAZARD INFO	EXPLANATION
EXOLIT AP 420			Aqueous solution of ammonium polyphosphate (APP)
EXOLIT AP 422			Fine-grained white APP powder with low water solubility
EXOLIT AP 423			Micronized AP 422, especially fine powder
EXOLIT AP 431 (LP)			Fine-grained white APP powder with low water solubility
EXOLIT AP 435 (TP)			Fine-grained white APP powder with low water solubility, ensuring low viscosity of IC formulations
EXOLIT AP 462			Microencapsulated AP 422 with extremely low water solubility
EXOLIT AP 740			APP blend with synergists for light weight UP resins and gel coats
EXOLIT AP 740 F	_		APP blend with synergists for light weight UP resins and gel coats, smaller particle size
EXOLIT AP 740 S			APP blend with synergists for light weight UP resins and gel coats, less water soluble
EXOLIT AP 750			Intumescent system based on APP, especially for thermoset polymers
EXOLIT IFR 36			Synergist APP blend for 2-component epoxy based hydro carbon IC applications
EXOLIT AP 761 (LP)			Intumescent system based on APP, especially for reinforced and extrusion applications
EXOLIT AP 765			Intumescent system based on APP, especially for reinforced and extrusion applications
EXOLIT AP 766	_	_	Intumescent system based on APP, especially for reinforced and extrusion applications
EXOLIT OP 550			Highly effective reactive, non-halogenated phosphorus polyol, functionality approx. 2
EXOLIT OP 560			Highly effective reactive, non-halogenated phosphorus polyol, functionality approx. 2
EXOLIT OP 930			Phosphinate, fine grained white powder especially developed for epoxy laminate systems
EXOLIT OP 935			Finer grained version of OP 930, especially developed for epoxy laminate systems
EXOLIT OP 945 (TP)			Finest grained version of OP 930, especially developed for adhesives, fibres and films
EXOLIT OP 950		•	Phosphinate, white powder which melts at around 200 °C
EXOLIT OP 1230			Highly stable phosphinate flame retardant for high temperature nylons
EXOLIT OP 1240			Phosphinate flame retardant for polyester injection moulding applications
EXOLIT OP 1248 (TP)			Phosphinate flame retardant system for polyester injection moulding applications
EXOLIT OP 1260 (TP)			Phosphinate flame retardant system for polyester injection moulding applications
EXOLIT OP 1311			Phosphinate flame retardant system for Thermoplastic Elastomers
EXOLIT OP 1312		•	Standard Phosphinate flame retardant system for reinforced polyamide 6 and polyamide 66
EXOLIT OP 1314		•	Phosphinate flame retardant system for reinforced polyamide 6 and polyamide 66 for demanding conditions
EXOLIT OP 1400			Phosphinate flame retardant system for all polyamides; Highest stability
EXOLIT EP 150 (LP)		•	Mono-functional liquid reactive phosphorus flame retardant for epoxy resins
EXOLIT RP 607		•	Specially treated and stabilized red phosphorus powder
EXOLIT RP 614 PC		•	Stabilized, micro encapsulated red phosphorus as a wet filtercake
EXOLIT RP 6500		-	Thixotropic dispersion (carrier: epoxy resin) of red phosphorus
EXOLIT RP 6520		•	Thixotropic dispersion (carrier: castor oil) of red phosphorus
EXOLIT 855 (LP)		•	Pre condensed partial phosphoric ester
EXOLIT 5060 PK			Organic halogen free phosphorus flame retardant, especially for incorporation into viscose fibres (press cake)
VISCOFIL®-EXOLIT 5060			Organic halogen free phosphorus flame retardant, especially for incorporation into viscose fibres (dispersion)

Established application

Development application

Test product, scale-up to commercial quantities in preparation

LP Laboratory product, still in development phase

Eco Tain Product

Hazard info see separate table

THERMOPLASTICS

ELASTOMERS

Poly- amides	Poly- ester	Poly- ethylene	Poly- propylene	Thermoplastic polyamide elastomer	Thermoplastic polyester elastomer	Styrenic based thermoplastic elastomer	Thermoplastic polyolefin elastomer/also cross-linked	Thermoplastic polyurethane elastomer

$Exolit^{\tiny{\circledR}}$

OVERVIEW BY POLYMER CLASS OR MATERIAL

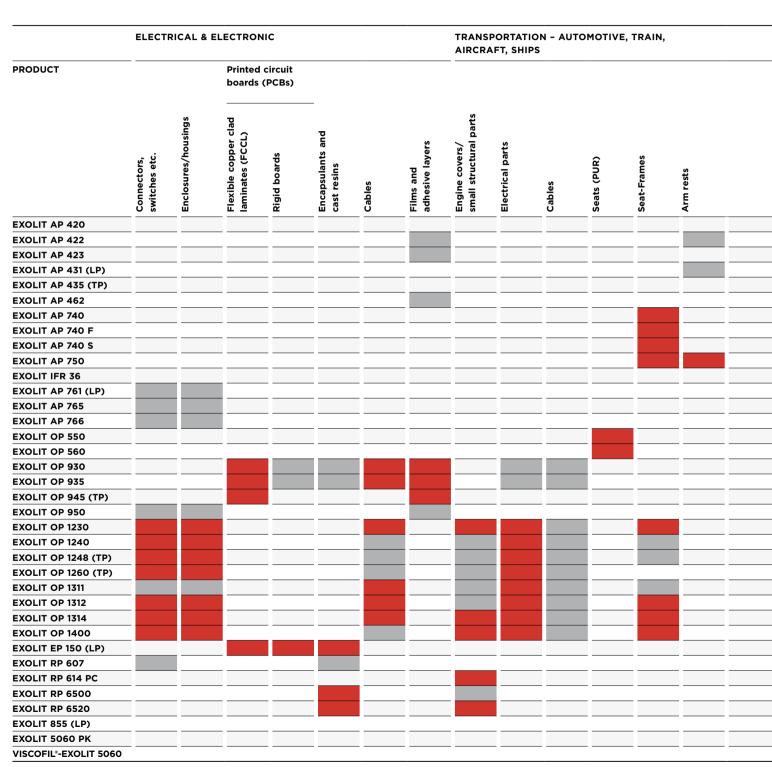
PRODUCT	ECO TAIN	HAZARD INFO	EXPLANATION
EXOLIT AP 420			Aqueous solution of ammonium polyphosphate (APP)
EXOLIT AP 422			Fine-grained white APP powder with low water solubility
EXOLIT AP 423			Micronized AP 422, especially fine powder
EXOLIT AP 431 (LP)			Fine-grained white APP powder with low water solubility
EXOLIT AP 435 (TP)			Fine-grained white APP powder with low water solubility, ensuring low viscosity of IC formulations
EXOLIT AP 462			Microencapsulated AP 422 with extremely low water solubility
EXOLIT AP 740			APP blend with synergists for light weight UP resins and gel coats
EXOLIT AP 740 F			APP blend with synergists for light weight UP resins and gel coats, smaller particle size
EXOLIT AP 740 S			APP blend with synergists for light weight UP resins and gel coats, less water soluble
EXOLIT AP 750			Intumescent system based on APP, especially for thermoset polymers
EXOLIT IFR 36			Synergist APP blend for 2-component epoxy based hydro carbon IC applications
EXOLIT AP 761 (LP)			Intumescent system based on APP, especially for reinforced and extrusion applications
EXOLIT AP 765			Intumescent system based on APP, especially for reinforced and extrusion applications
EXOLIT AP 766			Intumescent system based on APP, especially for reinforced and extrusion applications
EXOLIT OP 550			Highly effective reactive, non-halogenated phosphorus polyol, functionality approx. 2
EXOLIT OP 560			Highly effective reactive, non-halogenated phosphorus polyol, functionality approx. 2
EXOLIT OP 930			Phosphinate, fine grained white powder especially developed for epoxy laminate systems
EXOLIT OP 935			Finer grained version of OP 930, especially developed for epoxy laminate systems
EXOLIT OP 945 (TP)			Finest grained version of OP 930, especially developed for adhesives, fibres and films
EXOLIT OP 950		•	Phosphinate, white powder which melts at around 200 °C
EXOLIT OP 1230			Highly stable phosphinate flame retardant for high temperature nylons
EXOLIT OP 1240			Phosphinate flame retardant for polyester injection moulding applications
EXOLIT OP 1248 (TP)			Phosphinate flame retardant system for polyester injection moulding applications
EXOLIT OP 1260 (TP)			Phosphinate flame retardant system for polyester injection moulding applications
EXOLIT OP 1311			Phosphinate flame retardant system for Thermoplastic Elastomers
EXOLIT OP 1312		•	Standard Phosphinate flame retardant system for reinforced polyamide 6 and polyamide 66
EXOLIT OP 1314		•	Phosphinate flame retardant system for reinforced polyamide 6 and polyamide 66 for demanding conditions
EXOLIT OP 1400			Phosphinate flame retardant system for all polyamides; Highest stability
EXOLIT EP 150 (LP)		•	Mono-functional liquid reactive phosphorus flame retardant for epoxy resins
EXOLIT RP 607	_	•	Specially treated and stabilized red phosphorus powder
EXOLIT RP 614 PC		•	Stabilized, micro encapsulated red phosphorus as a wet filtercake
EXOLIT RP 6500		•	Thixotropic dispersion (carrier: epoxy resin) of red phosphorus
EXOLIT RP 6520		•	Thixotropic dispersion (carrier: castor oil) of red phosphorus
EXOLIT 855 (LP)		•	Pre condensed partial phosphoric ester
EXOLIT 5060 PK			Organic halogen free phosphorus flame retardant, especially for incorporation into viscose fibres (press cake)
VISCOFIL®-EXOLIT 5060			Organic halogen free phosphorus flame retardant, especially for incorporation into viscose fibres (dispersion)

Established application

Development application

TP Test product, scale-up to commercial quantities in preparation

LP Laboratory product, still in development phase

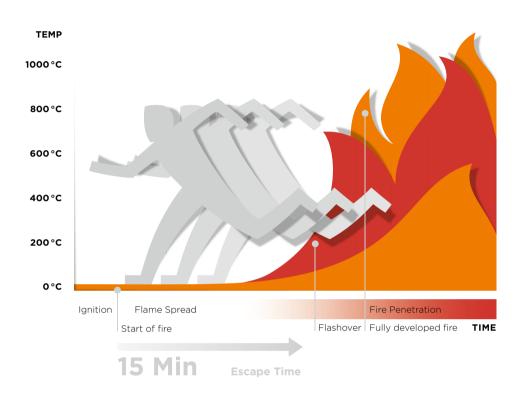

Eco Tain Product

Hazard info see separate table

HERMOSE	TS				FIRE PROTE SYSTEMS	CTION	OTHER MATERIALS					
Poly- irethanes	UP resins	Phenolic resins	Epoxy resins	Rubber	Adhesives, Dispersions, Sealants	Intumescent coatings	Latex	Paper/Wood	Linoleum	Viscose		
					_							
					_							

Exolit®

OVERVIEW BY APPLICATION



Established application
Development application
TP Test product, scale-up to

Test product, scale-up to commercial quantities in preparation

FIBRES & TEXTILES							BUILDING & CONSTRUCTION							
			Carpets		Textiles			Protec- tive clothing						
Structural parts	Gel Coats	Rubber Seals	Back coatings	Fibres	Coatings	Fibre/ Fabric treatment	Fibres	Viscose	Intumescent coatings	Cable coatings	Clear Coats	Profiles	Insulation	Sealants
			_											

How Flame Retardants can INCREASE ESCAPE TIME IN FIRES

Flame retardants reduce the risk of ignition and fire spread of many plastic and textile materials which results in more available escape time for occupants. Time to flashover can increase from 5 minutes to 15 minutes which can make the difference between escape and fatalities. Bear in mind that the escape time includes the time to discover the fire, alert other people, take the decision to call the fire brigade, take own actions to extinguish or take the decision to evacuate the building. The times and temperatures in the graphs are typical numbers, but can vary according to the circumstances and materials involved.

Exolit.com

Exolit for Thermoplastics brochure

Exolit for Thermosets brochure

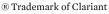
Discover Value story

HAZARD INFORMATION

The European Regulation on Classfication, Labelling and Packaging of substances and mixtures (»CLP Regulation«, EC 1272/2008) requires that hazard information of chemicals is provided in advertising literature. The properties listed below refer to the neat substance or mixture. Only if there is sufficient exposure, e. g. direct contact with the chemical, will the hazard properties materialize and pose harm to people or the environment. Based on the toxicological data the respective uses are evaluated, e. g. compounding a flame retardant into a polymer, where any chance of exposure by direct skin contact, ingestion or inhalation is greatly reduced. Thereby, safe use conditions are derived and assure that the user may safely handle and apply the products.

PRODUCT	GHS CLASSIFICATION HAZARD CLASS	HAZARD CATEGORY	HAZARD STATEMENTS				
EXOLIT EP 150 (LP)	Skin corrosion	1C	Causes severe skin burns and eye damage.				
EXOLIT OP 1312	Reproductive toxicity	2	Suspected of damaging the unborn child.				
	Aquatic toxicity	3	Harmful to aquatic life with long lasting effects.				
EXOLIT OP 1314	Reproductive toxicity	2	Suspected of damaging the unborn child.				
	Aquatic toxicity	3	Harmful to aquatic life with long lasting effects.				
EXOLIT OP 950	Serious eye damage	1	Causes serious eye damage.				
	Aquatic toxicity	1	Very toxic to aquatic life with long lasting effects.				
EXOLIT RP 607	Flammable solids	1	Flammable solid.				
	Skin sensitisation	1	May cause an allergic skin reaction.				
	Aquatic toxicity	2	Toxic to aquatic life with long lasting effects.				
EXOLIT RP 614 PC	Flammable solids		Flammable solid.				
	Skin sensitisation	1	May cause an allergic skin reaction.				
	Aquatic toxicity	3	Harmful to aquatic life with long lasting effects.				
EXOLIT RP 6500	Skin irritation	2	Causes skin irritation.				
	Eye irritation	2	May cause an allergic skin reaction.				
	Skin sensitisation	1	Causes serious eye irritation.				
	Chronic aquatic toxicity	2	Toxic to aquatic life with long lasting effects.				
EXOLIT RP 6520	Skin sensitisation	1	May cause an allergic skin reaction.				
	Aquatic toxicity	3	Harmful to aquatic life with long lasting effects.				
EXOLIT 855 (LP)	Corrosive to metals	1	May be corrosive to metals.				
	Skin corrosion	1A	Causes severe skin burns and eye damage.				
	Serious eye damage	1	Causes serious eye damage.				

Information on hazardous properties of Exolit products according to European Regulation (EC) No. 1907/2006 (REACH) and Regulation (EC) No 1272/2008 (CLP-Classification, Labeling and Packaging).


CLARIANT PLASTICS & COATINGS (DEUTSCHLAND) GMBH Am Unisys Park 1 65843 Sulzbach am Taunus Germany

FLAME RETARDANTS CUSTOMER SERVICE FLAMERETARDANTS@CLARIANT.COM Phone + 49 61 96 757 66 20

EXOLIT.COM CLARIANT.COM

This information corresponds to the present state of our knowledge and is intended as a general description of our products and their possible applications. Clariant makes no warranties, express or implied, as to the information's accuracy, adequacy, sufficiency or freedom from defect and assumes no liability in connection with any use of this information. Any user of this product is responsible for determining the suitability of Clariant's products for its particular application. * Nothing included in this information waives any of Clariant's General Terms and Conditions of Sale, which control unless it agrees otherwise in writing. Any existing intellectual/industrial property rights must be observed. Due to possible changes in our products and applicable national and international regulations and laws, the status of our products could change. Material Safety Data Sheets providing safety precautions, that should be observed when handling or storing Clariant products, are available upon request and are provided in compliance with applicable law. You should obtain and review the applicable Material Safety Data Sheet information before handling any of these products. For additional information, please contact Clariant.

* For sales to customers located within the United States and Canada the following applies in addition: NO EXPRESS OR IMPLIED WARRANTY IS MADE OF THE MERCHANTABILITY, SUITABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE OF ANY PRODUCT OR SERVICE.

^{© 2016} Clariant Plastics & Coatings Ltd

